A 100 N box is on a ramp that makes a 35 degree angle with the horizontal. The weight of the box acts straight down due to pull of gravity. A 100 N box is on a ramp that makes a 35 degree angle with the horizontal. The weight of the box acts straight down due to pull of gravity. What part of the box's weight acts parallel to the ramp (F_{\parallel}) and what part acts perpendicular (F_{\parallel}) ? Oct 19-11:14 AM A 100 N box is on a ramp that makes a 35 degree angle with the horizontal. The weight of the box acts straight down due to pull of gravity. What part of the box's weight acts parallel to the ramp (F_{\parallel}) and what part acts perpendicular (F_{\parallel}) ? Note that F_{\parallel} and F_{\perp} are components of the weight of the box (100N) F_{w} . To add the components vectorally you would move the tail of F_{\parallel} down to the head at the head of F_{\perp} A 100 N box is on a ramp that makes a 35 degree angle with the horizintal. The weight of the box acts straight down due to pull of gravity. What part of the box's weight acts parallel to the ramp (F_{II}) and what part acts perpendicular (F_{IJ}) ? Note that F_{\parallel} and F_{\perp} are components of the weight of the box (100N) F_{w} . To add the components vectorally you would move the tail of F_{\parallel} down to the head at the head of F_{\perp} Oct 19-11:22 AM